
Konada.Db - User Guide
Accessing Oracle Databases with Ada

Frank Piron, KonAd GmbH ∗

July 2, 2007

Abstract

Konada.Db is an Ada library for easy Database Access with reasonable
performance. Actually only Oracle databases are supported. Konada.Db
for Oracle is built on top of Dmitriy Anisimkov’s Ada Oci library, an Ada
Binding to the Oracle Call Interface.

Konada.Db for Oracle supports Bind Variables, Multiple Connections,
Asynchronous Procedure Calls and an easy to use SQL interface to lob’s
- large objects. The management of Define and Bind Variables is done
by the Library.

This Guide contains a tutorial introduction to Konada.Db. A basic
knowledge of Oracle Databases and Ada programming is necessary to
understand the material.

∗In der Reis 5, D-79232 March-Buchheim, e-mail: frank.piron@konad.de,
http://www.konad.de

1

CONTENTS 2

Contents

1 Preface 5

2 Installation Instructions 6

2.1 Prerequisites . 6

2.2 Basic Installation . 6

2.3 Test of the Installation . 7

3 Tutorial Preparation 9

4 Connecting to the Database 10

4.1 Establishing a Connection . 10

4.2 The Default Connection . 12

4.3 The Utility Console Logon . 12

4.4 The Source Code . 13

5 Database Errors 14

6 Executing Sql Statements 15

6.1 Interaction with the Database System 15

6.2 A simple Example . 16

6.3 Transaction Control . 17

6.4 Handling Errors . 19

6.5 Memory Management . 20

6.6 The Source . 20

7 The Select List 21

7.1 Sql Statement processing . 21

7.2 Retrieving Simple Select List Information 22

7.3 The Konada.Db Typecat System 23

7.4 Retrieving detailed Select List Information 26

CONTENTS 3

8 Fetching and Extracting Data 29

8.1 A Simple Example . 29

8.2 Date and Number Formats . 30

8.3 Extracting to other Ada Datatypes 30

8.4 Handling Null Values . 32

9 Using Bind Placeholders 33

9.1 Why Bind Placeholders? . 33

9.2 Explicit Binds . 37

9.3 Setting Values and implicit Binds 38

9.4 Data Extraction from Binds . 41

10 Calling Stored Units 43

10.1 Calling Stored Units using Binds 43

10.2 Managing the SQL Instance . 44

11 Persistent Types 46

11.1 An example . 46

11.2 Setters and Getters . 47

12 Asynchronous Execution 49

13 Locking 51

13.1 How to avoid Blocks . 51

13.2 The Lock() Utility Procedure 52

14 Large Objects 53

14.1 Introduction . 53

14.2 Lob Support in Konada.Db . 53

14.3 Extracting Lobs . 54

14.4 Modifying Lobs . 54

14.5 Binary Get() and Set() . 55

CONTENTS 4

15 List of Examples 56

1 PREFACE 5

1 Preface

To make Ada known to a broader developer community there is a need for some
Standard Applications written in Ada. The strict type concept of Ada together
with its OO capabilities make it a suitable language for developing database
applications.

KonAd GmbH is currently developing a workflow engine which heavily uses
Oracle Packages. To reuse developer skills in PL/SQL which is much like Ada831

and to take advantage of Ada’s ability to manage big software systems we decided
to use Ada to build our workflow client library.

Since it is not easy to get support for SQL*Module2 and on the other hand
the Oracle Call Interface3 gives greater flexibility, we decided to build an Ada
database access library based on the OCI.

Some web search lead us to the Ada Oci binding written by Dmitriy Anisimkov.
This binding to the OCI contains almost all of the OCI features including asyn-
chronous procdure calls and basic Lob support4.

We built Konada.Db on top of Ada Oci to free the library user from the
management of define and bind variables. In Konada.Db this is done via an
opaque type Sqltype.

Binding variables is semi automatic and define is not necessary at all. Ex-
traction functions for getting Data retrieved by a select statement are providing
internal conversions to Ada.Calendar.Time, Integer, Long Float or String. Kon-
ada.Db introduces a small set of typecodes which is Ada centered and hides
nearly all database specific type constructs. Further the handling of lob’s with
SQL is implemented in a way that you may use lob’s almost like other data.

But it should be said, that the heavy work was done by Dmitriy Anisimkov
in writing Ada Oci. Thanks to him for the permission to include Ada Oci in this
distribution and for his rapid bug fixing.

This Guide is intended to make the developer familiar with Konada.Db and
to provide first advice for database programming with Ada.

1At least in the basic language constructs
2An Oracle precompiler which permits embedded SQL in Ada
3OCI
4Lob = Large Object. You may save large binary or text objects into the database

2 INSTALLATION INSTRUCTIONS 6

2 Installation Instructions

2.1 Prerequisites

Before you can develop programs with Konada.Db you need the following com-
ponents on your machine:

� One of the OS win98/nt/2000/xp, Gnu Linux5 or Sun Solaris6

� An Oracle Client installation with access to an Oracle database and an Oci
version >= 8.1.6. In your Database you should also have a “scott” schema
installed7. You may join the Oracle technology network and download
Oracle software for free. See www.otn.oracle.com.

� An Ada Compiler. Konada.Db is tested with the gnat compiler 8 which is
maintained by Ada Core Technologies. For free Download see
http://libre.adacore.com.

� The Konada.Db distribution which contains the Ada Oci Binding of Dmitriy
Anisimkov.

2.2 Basic Installation

First follow the instructions in the README file from the distribution top level
directory. If you could not build KONADA ROOT\lib\dummy.exe on windows then
check if you have an environment variable ORACLE HOME set to the root of the
Oracle software tree before calling make konada. This is the main cause for
failure.

If you could not build the dummy executable on UNIX9 then most likely your
UNIX account is missing an Oracle setup.

� Check that your ORACLE HOME environment variable is set correctly.

5Konada.Db was tested successfully on Debian with gnat 3.15p and gnatgcc 3.4.2
6We tested successfully Solaris 8/9/10 on a Sparc 64 Bit Machine with gnat 3.15p, gnatgcc

3.4.2 and the pthread runtime.
7This is a very small database schema owned by user scott which the Oracle documentation

refers to.
8As of June 2007 Konada.Db ist tested with gnatgcc 3.4.2, the gnat version which is

bundled with gcc 3.4.2
9If i write “UNIX” i include Gnu/Linux of course

2 INSTALLATION INSTRUCTIONS 7

� Check that your PATH contains $ORACLE HOME/bin

� Check that your LD LIBRARY PATH contains $ORACLE HOME/lib

2.3 Test of the Installation

If not already done build demo1, demo2, demo3 in KONADA ROOT\samples\simple
according to the instructions in KONADA ROOT\README. Now run demo1 from the
command line (DOS Box on Windows) with:

> demo1 scott/tiger@<tnsname>

where <tnsname> is your database access descriptor. If you omit the tnsname
then Konada.Db assumes local. If you call demo1 without arguments then the
program asks for connection information. After logon enter an employee number
and optionally change the name. Quit with entering 0 as an employee number.

Note on Windows Installations:

On windows there could pop up a message box saying
that the procedure entry point for OciEnvCreate could
not be found. In this case check your Installation. May
be that you have more than one Oci.dll on your machine
and there is one older version loaded at runtime which
you not specified implicitly by setting ORACLE HOME
when building Konada.Db. Also if you have more than one
Oracle software trees on your machine then use the Oracle
Home Selector to set the Oracle Home to the one given
when you built Konada.Db.

Demo2 is similar but creates a function emp desc in the scott schema and
then calls this function for an employee. Before termination the function is
dropped.

Demo3 runs without interaction showing synchronous and asynchronous state-
ment execution. Demo3 temporarily creates a procedure wait() in scott’s
schema.

If you have a recent installation of Gwindows on your machine you may also
build KONADA ROOT\samples\gui\gui example but check the README first.
Gui Example provides a simple GUI frontend for SQL statement execution.

Finally you may build and run KONADA ROOT\samples\lob\lobdemo. This

2 INSTALLATION INSTRUCTIONS 8

program manages images of employees in the scott schema. But follow care-
fully the instructions given in the README since some database administration
activities are necessary before running lobdemo.10

10You have to create a table and load lob data.

3 TUTORIAL PREPARATION 9

3 Tutorial Preparation

In the following sections we will show the features of Konada.Db and give guide-
lines for development. Also some background information concerning the inter-
nals of Oci is presented.

To understand the content of this tutorial you should have basic knowledge of
Oracle Databases e.g. you should know what is a TNS-Name, what is a Database
Instance and how to write SQL statements. Also you should have learned the
fundamentals of Ada programming.

The examples discussed in this tutorial are stored in KONADA ROOT\tutorial.
Tut 4 2 is the second example of section no. 411 in the tutorial.

In some tutorial examples a TNS-Name “tut” is hardcoded. You should
create such a TNS-Name in your Oracle environment pointing to a Database In-
stance with a scott schema installed to run these examples without modification.

The scott schema is necessary to run the examples. If you don’t have one in
your database then

� Create a user scott with password tiger in your database.

� Grant the roles Connect and Resource to him.

� Import the file KONADA ROOT\scott.dmp to the user scott with the com-
mand:
>imp system/<password>@<tnsname> file=KONADA ROOT\scott.dmp
fromuser=scott touser=scott

The executable for imp may have a different name on your system like
imp80 or similar.

In the tutorial all pathnames are given in windows notation using “\”12.

11Connecting to the Database
12This definitely does not indicate any preference of the author for the windows operating

system

4 CONNECTING TO THE DATABASE 10

4 Connecting to the Database

Before you can do anything with an Oracle database in your program you have
to establish a connection, open a session and allocate a server context. In
Konada.Db there is a Connection Type and instances of this type contain and
manage all these objects.

After a connection is established all subsequent actions may be performed
in the context of this connection. You may establish more than one connection
in your application program. In subsequent actions you may then specify with
respect to which connection a particular action should be perormed e.g. a select
statement should be executed or a procedure should be called.

4.1 Establishing a Connection

And here is the most simple Konada.Db program. The Hello World of Kon-
ada.Db. tut 4 1 creates a connection, outputs the server version and disconnects
from the database. Below you see the line numbered source of tut 4 1.adb

Tut 4 1:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Text_Io; use Text_Io;

3 procedure Tut_4_1 is

4 Tut_Connection: Connection_Type;

5 begin

6 -- Logon

7 Logon(Conn => Tut_Connection,

8 Username => "scott",

9 Password => "tiger",

10 Database => "tut");

11 -- Output server version

12 Put_Line(Rdbms_Version(Tut_Connection));

13 -- And logoff. Not necessary here since done automatically

14 -- at end of program.

15 Logoff(Tut_Connection);

16 end Tut_4_1;

If Konada.Db ist installed correctly and if ADA INCLUDE PATH and ADA OBJECTS PATH

contain KONADA ROOT\lib and KONADA ROOT\oci then you may build Tut 4 1

4 CONNECTING TO THE DATABASE 11

with

> gnatmake -i tut 4 1 -largs -loci

on windows or

> gnatmake -i tut 4 1 -largs -lclntsh

on UNIX. Now if you run this little program the following may happen:

First Alternative is Success:

c:\konada\tutorial>tut_4_1

Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production

With the Partitioning option

JServer Release 8.1.7.0.0 - Production

If you get an output similar to the above then all is fine.

Second Alternative is Database Error:

c:\konada\tutorial>tut_4_1

raised OCI.THICK.LIB_ERROR : ORA-12154: TNS: ... (language specific

error message)

The above error indicates, that you have no “tut” TNS-Name in your Oracle
environment. The error is passed through by Oci.Thick to the main Unit. In the
next section we will see how to handle Database errors. A different Database
error would raise if you try to connect to an instance without a scott schema.

Third Alternative is OS Error:

On windows there could pop up a message box saying that the procedure
entry point for OciEnvCreate could not be found. See the above Section Test of
the installation2.3.

The Logoff Statement in line 15 of the above listing is not really necessary since
Logoff is called implicitly when Tut Connection is destroyed.

4 CONNECTING TO THE DATABASE 12

4.2 The Default Connection

When your program does not need multiple connections then it is not necessary
to mention connections at all in your code since Konada.Db manages a Default
Connection. The Default Connection is always the first Connection established
by the program and every function/procedure which has a Conn parameter takes
this Default Connection if you don’t supply a specific Conn value. Making use
of this feature the Code of tut 4 1 simplifies to:

Tut 4 2:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Text_Io; use Text_Io;

3 procedure Tut_4_2 is

4 begin

5 -- Logon

6 Logon(Connect_String => "scott/tiger@tut");

7 -- Output server version

8 Put_Line(Rdbms_Version);

9 end Tut_4_2;

As you can see, no connection variable is declared. The default connection is
used instead by the library. Also note the overloading of the logon procedure. You
may supply an Oracle like connect string <user>/<password>@<tns name>
which contains the logon information. The default connection may also be useful
in a multiple connection program since it may save keystrokes not to mention
the mostly used connection everytime.

With the function/procedure Get Default Connection() and Set Default -

Connection() you can control the default connection in a multiple connection
program.

4.3 The Utility Console Logon

In the package Konada.Db.Utils there is the overloaded Function Console Logon()

which permits a comfortable logon in console applications.

Tut 4 3:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Utils; use Konada.Db.Utils;

4 CONNECTING TO THE DATABASE 13

3 with Text_Io; use Text_Io;

4 procedure Tut_4_3 is

5 begin

6 -- Logon, ask Information from user or get it from argv[1]

7 Console_Logon;

8 -- Output server version

9 Put_Line(Rdbms_Version);

10 end Tut_4_3;

Console Logon() asks the logon information from the user. You may con-
trol the language of the prompted text by setting the variable Language in
KONADA ROOT\lib\Konada.ads. If you supply an Oracle connect string as the
first command line parameter then Console Logon uses this information und
skips prompting.

c:\konada\tutorial>tut_4_3 scott/tiger@tut

Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production

With the Partitioning option

JServer Release 8.1.7.0.0 - Production

In Konada.Db.Gui there is the procedure Gui Logon which provides a little
logon window. But you need Gwindows to build a Konada Gui program.

4.4 The Source Code

The spec for the konada connection package Konada.Db.Connections is KONADA ROOT-

\lib\konada-db-connections.ads. Take a look at it. Note that the Session Mode

Parameter is not evaluated yet because holding multiple sessions on one con-
nection is not implemented. Note also that you may test the availability of a
connection with the function Connected().

Finally you will find the transaction control procedures Commit() and Rollback()
which we will discuss later.

5 DATABASE ERRORS 14

5 Database Errors

With Database Error i will denote an Error which occurs either in the Database
Server or in the client’s Oci Environment. If such an error occurs, an exception
Oci.Thick.Lib Error is raised inside the Ada Oci library which includes the Oracle
error code and -message in its exception information. In most cases Konada.Db
will pass through the exception to the application program. The other cases will
be discussed in later sections.

You may call the functions Sql Error Code and Sql Error Message to
retrieve the last Database Error Code as an Integer and the last Error Message
as a string. These Functions are located in Konada.Db.Sql. Now look at the
code snippet from tut 5 1 which shows the block with the logon and an exception
handler13.

Tut 5 1:

...

10 begin

11 Console_Logon;

12 exception

13 -- handle Oci Error

14 when Oci.Thick.Lib_Error =>

15 case Sql_Error_Code is

16 -- 12154=tnsname could not be resolved

17 when 12154 =>

18 Put_Line("No Connection. Wrong tnsname!");

19 -- 01017=invalid username/password ...

20 when 1017 =>

21 Put_Line("Authentication Failure. Check user/password!");

22 when others =>

23 raise;

24 end case;

25 return;

26 end;

...

Oci.Thick.Lib Error is catched and then dependent on Sql Error Code several
actions may be performed. The Error Codes are listed in the Oracle Documen-
tation14.

13Of course Konada.Db.Sql and Oci.Thick are withed in this example
14Oracle Database Error Messages

6 EXECUTING SQL STATEMENTS 15

6 Executing Sql Statements

6.1 Interaction with the Database System

How does the interaction between an application program and a Database Server
look like?

1. The application program establishes one or more connection(s) to the
server.

2. � An Sql statement is send to the server or

� A function/procedure is called on the server or

� A transaction control statement15 is issued or

� Errors are handled or

� Data pieces retrieved form a Select statement are processed

3. The connection(s) are closed

In this section we will discuss Sql Statement execution and transaction con-
trol. Because the retrieval of data given by a Select statement is a more complex
issue i will restrict the discussion in this section to DML statements16.

All data structures and procedures related to Sql statement execution in
Konada.Db are packed into the type Sqltype declared in Konada.Db.Sql. The
whole content of these data structures is called an Sqlinstance. When a variable
of type Sqltype is declared it is initialized with an empty Sqlinstance. If you
want to execute an Sql statement you proceed as follows:

1. Declare a variable of type Sqltype.

2. Establish a connection17.

3. Create an Sqlinstance providing a statement in the context of a connection.

4. Execute the Sqlinstance.

5. Commit or rollback the transaction

15Commit or Rollback
16These are Insert-, Update- and Delete-Statements
17and implicitly start a transaction

6 EXECUTING SQL STATEMENTS 16

6.2 A simple Example

We start with a simple example. Suppose you want to change the name of the
employee with number 7369 to “Adams”. So you want to send the following Sql
statement to the server:

update emp

set ename=’Adams’

where empno=7369

The next example shows how to do it with Konada.Db:

Tut 6 1:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Sql; use Konada.Db.Sql;

3 --

4 with Text_Io; use Text_Io;

5 -- for ’LF’=Linefeed

6 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

7 --

8 procedure Tut_6_1 is

9 -- Declare variable

10 Change_Name: Sqltype;

11 Connection: Connection_Type;

12 begin

13 -- Logon

14 Logon(Conn => Connection,

15 Connect_String => "scott/tiger@tut");

16 -- Create an Sqlinstance in the context of "Connection"

17 Create(Newsql => Change_Name ,

18 Code => "update emp " &LF&

19 " set ename=’Adams’" &LF&

20 " where empno=7369",

21 Conn => Connection);

22 Execute(Change_Name);

23 -- Show how much rows were affected by the statement

24 Put_Line(Natural’Image(Rows_Processed(Change_Name)) &

25 " row(s) changed.");

26 end Tut_6_1;

6 EXECUTING SQL STATEMENTS 17

In line 10 a variable of type Sqltype is declared which is initialized with
an empty Sqlinstance. Then after logon with an explicit named connection the
Sqlinstance is created in the context of the connection (lines 17-21). Of course
we could have used no named connection and not supplied the Conn Parameter
in the calls to Logon and Create thus forcing Konada.Db to use the default
connection.

Now before you proceed you should inspect the table emp with Sql*Plus

or your favorite query tool und ensure that the name of employee no 7369 has
changed to “Adams”. Note that no commit statement was necessary since Oci
performes an implicit commit if you regularly log off. The normal completion of
the program without exception thus includes a commit of all open transaction(s).

Look at line 24 of tut 6 1 where the function rows processed() is called
to retrieve the number of rows affected by the dml statement. You may use this
function also to give a warning to the user if the number of affected rows is big.

6.3 Transaction Control

With the opening of a new connection and with every commit or rollback state-
ment a new transaction is started. Every transaction18 belongs to a connec-
tion/session and every dml statement belongs to a transaction. With the com-
mit statement you end a transaction, make your database changes permanent
and start a new transaction. With the rollback statement you make all changes
caused by dml statements in the current transaction undone and start a new
transaction.

If an Oci program terminates regularly all open transactions are committed.
If it terminates caused by an exception all open transactions are rolled back.

The following example should clearify the control of transaction.

Tut 6 2:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Sql; use Konada.Db.Sql;

3 --

4 with Text_Io; use Text_Io;

5 -- for ’LF’=Linefeed

6 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

7 --

18in a non distributed environment

6 EXECUTING SQL STATEMENTS 18

8 procedure Tut_6_2 is

9 -- Declare Sqlinstance variables

10 Change_Name1,

11 Change_Name2: Sqltype;

12 -- And Connection variables

13 Connection1,

14 Connection2: Connection_Type;

15 Choice: Character;

16 begin

17 -- Open two connections

18 Logon(Connection1, Connect_String => "scott/tiger@tut");

19 Logon(Connection2, Connect_String => "scott/tiger@tut");

20 -- Create an Sqlinstance in each connection

21 Create(Newsql => Change_Name1,

22 Code => "update emp " &LF&

23 " set ename=’Miller’" &LF&

24 " where empno=7369",

25 Conn => Connection1);

26 Create(Newsql => Change_Name2,

27 Code => "update emp " &LF&

28 " set ename=’Lopez’" &LF&

29 " where empno=7499",

30 Conn => Connection2);

31 -- Execute both

32 Execute(Change_Name1); Execute(Change_Name2);

33 -- ask user

34 Put("(1) commit only 1, (2) commit only 2, (3) commit both: ");

35 Get_Immediate(Choice);

36 case Choice is

37 when ’1’ =>

38 Commit(Connection1); Rollback(Connection2);

39 when ’2’ =>

40 Commit(Connection2); Rollback(Connection1);

41 when ’3’ =>

42 return;

43 when others =>

44 New_Line;

45 Put_Line("Illegal choice! All rolled back.");

46 Rollback(Connection1);Rollback(Connection2);

47 end case;

48 end Tut_6_2;

6 EXECUTING SQL STATEMENTS 19

Again you may examine the data changes with SQL*plus and check wether
all is like you expected.

Note that in the Example different rows are updated. Try to update the same
row by setting “... empno=7369 ... “ in the code of Change Name2 in line 29.
Terminate the program by sending a signal19 since it blocks itself by trying to
update the same row from 2 different sessions. In section 13 when we will discuss
locking we will see how to avoid such situations.

6.4 Handling Errors

As mentioned earlier most Database Errors are passed through by Konada.Db
from Oci.Thick. However errors ocurring during Execute() cause a Kona-
da.Db.SQL ERROR exception20. The error message21 contains a pointer to a
position in the statement code where the error cause most likely is located.

To get an example take tut 6 1.adb and change line 19 as follows:

19 " set name=’Adams’" &LF&

by changing ename to name. Build the executable und run it. You will get an
error message:

c:\konada\tutorial>tut_6_1

raised KONADA.DB.SQL_ERROR : ORA-00904: invalid column name

update emp

set ->>> name=’Adams’

where empno=7369

Note that ->>> points to the wrong column name. Of course you may catch the
exception and evaluate SQL ERROR CODE for individual error handling.

19E.g. by typing <CTRL>-C on your keyboard
20Declared in KONADA ROOT\lib\konada-db.ads
21Exception Information

6 EXECUTING SQL STATEMENTS 20

6.5 Memory Management

Since variables of type Sqltype contain Sqlinstances with deep data structures
you may wonder how memory is managed.

The type Sqltype is derived from Limited Controlled and therefore mem-
ory is managed by the ada runtime support system. But if you want to release all
dynamically allocated memory explicitly in your program you may call Destroy()
for example Destroy(Change Name). The procedure Destroy() is defined in
Konada.Db.Sql.

If you call Create() on a variable of type Sqltype which was already filled
with an Sqlinstance by an earlier call of Create() then Konada.Db first finalizes
the Sqlinstance before creating a new one. So you don’t have to do this manually.

If you want to check wether a variable var contains an empty Sqlinstance22

you may call Is empty(var) from Konada.Db.Sql. Later in 9 we will see exam-
ples in which this function is used to improve performance.

6.6 The Source

Take a look now at KONADA ROOT\lib\konada-db-sql.ads, sections INITIA-
LIZATION and EXECUTION.

Note that there is an additional boolean parameter Async in the parameter list
of Execute() defaulting to false. We will see in 12 how to execute statements
in a non blocking fashion. The procedures Check Finished() and Cancel()

are also related to this feature.

Finally note the function Statement Cat() which returns an element of
the enumeration type Statement Cat Type=(dql, dml, other). You may
use this function in your program when the statement code comes from an
outer source23. For example after detecting a dml statement you can display
Rows Processed() which does not make sense for a ddl (=other) statement.

22That is: Create(var) was either never called or the Sqlinstance was finalized explicitly
23Entered by the user for example

7 THE SELECT LIST 21

7 The Select List

7.1 Sql Statement processing

Before we go on to execute select statements and retrieve data, lets take a
look on what the database does in the background when we send it an SQL
statement. The steps below are specific to Oracle but every RDBMS has similar
items:

1. Cursor Creation

2. Parsing

3. (select) Desribe Results

4. (select) Define Output

5. Bind

6. Execute

7. (select) Fetch

8. Close Cursor

Each of the following pragraphs corresponds to a procedure in Konada.Db.Sql
and summarizes the covered stages of SQL Statement processing.

Konada.Db.Sql.Create()
First a Cursor is created on the Server. The Cursor holds all server side data
structures which are necessary to process the statement. In the second stage the
Statement is parsed. This means that the statement is analyzed and translated
into the RDBMS low level calls. An Execution Plan24 is created. These two
stages are covered by a call to Create() in Konada.Db.Sql.

Konada.Db.Sql.Execute()
If we have sent a query25 then in the 3. stage the result is described. That
is: the structure of the result is known now to the RDBMS and to the client
library (Oci). In particular we may retrieve now the count of the columns of the
result, the data types, the names and the lengths. The 4. stage is define. In the
define stage the programmer has to provide storage locations - e.g. variables -

24Strategy of the data retrieval
25select Statement

7 THE SELECT LIST 22

into which the result values of a query are fetched26. You would have to tell the
RDBMS the datatypes of these variables and how many space in memory is given
for each. The 5. stage, bind is discussed later in 9. In the 6. phase the statement
is executed. In particular: a dml statement is submitted to the transaction and
for a query the first data row is retrieved on the server. If the statement is an
update then locking 27 is performed. All these stages - with the exception of bind
- are performed by the Execute() procedure in Konada.Db.Sql. Especially you
have not to provide define variables.

Konada.Db.Sql.Fetch()
Now for select statements the result rows may be fetched by the client program
which is discussed in 8.

Konada.Db.Sql.Destroy()
Finally in the 8. stage the cursor is closed. This event takes place if you explicitly
destroy an Sqlinstance using Konada.Db.Sql.Destroy() or if the ada runtime
support system finalizes a variable of type Sqltype.

7.2 Retrieving Simple Select List Information

Every Select Statement returns a result which is structured like a table. The
columns of the result table in their natural ordering constitute the Select List of
the query. In this list every column has a unique position, a name, a datatype, a
size and possibly a scale28.

In this section i show how to determine the count of the columns, their names
and their positions. Look at the following example:

Tut 7 1:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Sql; use Konada.Db.Sql;

3 --

4 with Text_Io; use Text_Io;

5 -- for ’LF’=Linefeed

6 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

7 --

8 procedure Tut_7_1 is

9 -- Declare Sqlinstance variable

26The Konada.Db programmer is happy, because define is done completely by the library
27Will be discussed later
28for real numbers

7 THE SELECT LIST 23

10 Select_Emp: Sqltype;

11 begin

12 -- Logon using default connection

13 Logon("scott/tiger@tut");

14 -- Create an Sqlinstance

15 Create(Newsql => Select_Emp,

16 Code => "Select * from emp");

17 -- Execute it implicitly describing the query and define

18 -- variables which will hold result values after fetch()

19 Execute(Select_Emp);

20 -- Output column names using functions Column_Count() and Column_Name()

21 for I in 1..Column_Count(Select_Emp) loop

22 Put_Line(Column_Name(Select_Emp,I));

23 end loop;

24 end Tut_7_1;

The interesting lines are 21 and 22 where the Functions Column Count()

and Column Name() from Konada.Db.Sql are used. Remember from the last
section that the query has to be executed before the select list information is
available and these functions can be called. Otherwise Column Count() would
return 0 and Column Name() the empty string.

Sometimes you know the column name and you want to determine the posi-
tion of the column in the select list. For this task use Konada.Db.Sql.Column Position()

which returns the position of a column as a positive. Call it like this

...

pos:=Column_Position(Sqlcmd => Select_Emp,

Name => "Empno");

...

Column Position() does not require the name with exact case. If the name
could not be found in the select list or if the statement is not already executed,
Konada.Db.Name Error is raised with the “name” argument mentioned in the
exception information.

7.3 The Konada.Db Typecat System

Now before we go on to the more detailed select list information we have to
discuss Datatypes in the circumstances of database programming. Every column

7 THE SELECT LIST 24

of a table in the database has a database specific type. In Oracle every column
has one of the following datatypes:

� Character Datatypes

– CHAR(n). This is for string columns with fixed length n. n <= 2000
Byte.

– VARCHAR2(n). For variable strings up to length n. n <= 4000 Byte.

– NVARCHAR2(n). Like VARCHAR2(n) but for unicode character sets.

– LONG. For variable length character data up to 2GB. But this type is
deprecated. Use CLOB instead (See 14).

� The NUMBER(p,s) datatype for integer and real numbers. Here p is the
total number of digits and s the number of digits to the right of the decimal
point. p <= 38.

� The DATE datatype for points in time with a precision down to seconds.

� LOB = Large Object datatypes.

– BLOB. For unstructured binary data up to 4GB.

– CLOB. For character data up to 4GB. This type replaces the LONG

datatype.

– BFILE. In columns of this type you may store references to external
OS-Files up to 4GB in size.

� RAW and LONG RAW. For unstructured binary data up to 2GB. This type is
deprecated. Use BLOB or BFILE instead.

� ROWID. Internal datatype for storing the location of a table row on disk.
This datatype cannot be given explicitly to a table’s column. It is managed
internally by the RDBMS.

If you write a program which retrieves data from a database server the column
values must be stored in memory. Since you don’t have the Oracle (or other
RDBMS) datatypes available in your favourite programming language29 there
must be some intermediate software layer which is responsible for type conversion.

The Oracle Call interface (OCI) - a C library - provides Client datatypes into
which the retrieved column values are converted. The Ada Oci Binding then

29Unless you are using a database native developing tool like developer2000

7 THE SELECT LIST 25

provides more complex Ada types which hold the column values. And finally
Konada.Db uses one Data Element Type - a discriminated variant datatype -
which can hold any data value. Since Konada.Db is designed to be independent
of a particular database system it uses it’s own Typecat30 schema.

The Typecat is no new datatype. You may imagine it as a tag on the
Data Element Type. In fact it is the discriminant of the variant. The Typecat
is an instance of Konada.Db.Sql.Typecat Type which is an enumeration type:

type Typecat_Tpe is (StrB, StrUB, Int, Num,

Date, Blob, Clob, Bfile);

Figure 1: Varchar2() datatype from RDBMS to Konada.Db

After a column value is retrieved it is stored in a data element with a specific
typecat. The typecat depends on the Oracle Datatype of course. The data ele-
ments are allocated in memory by Konada.Db if a Select statement is executed.
This is done automatically by the library.

In the picture above you can see for the Oracle Varchar2() datatype how this
type is represented in the Software layers from the RDBMS down to Konada.Db.

30Short for Type Category

7 THE SELECT LIST 26

To summarize: All RDBMS specific datatypes are represented in Konada.Db
by one discriminated Data Element Type which is a variant. Which datatype
is actually stored in the variant is determined by the Typecat value of the
Data Element Type.

Now after a select statement is executed and define has been performed you
may retrieve the Typecat of each column with the function Konada.Db.Sql.Col-
type(). Tut 7 2 in KONADA ROOT\tutorial shows how to use this function.

The following table shows how Oracle datatypes are mapped to Konada.Db
Typecat values in the stage of define. Note that the ROWID datatype maps to
an StrUB which is the Typecat value of an unbounded string. This is not very
useful but there are conversion functions in Oracle Sql which you may call in the
projection clause of your select statement.

Oracle Datatype Konada.Db Typecat

CHAR(n)

VARCHAR2(n) StrB
NVARCHAR2(n)

NUMBER(p,0) Int
NUMBER(p,s) Num

DATE Date

BLOB Blob
CLOB Clob
BFILE Bfile

LONG

RAW

LONG RAW StrUB
ROWID

Table 1: Oracle Datatype Mapping in Konada.Db

7.4 Retrieving detailed Select List Information

Now that you have learned about the Typecat values in Konada.Db, we go on
and look how to retrieve more detailed information about the Select List.

Tut 7 3 in KONADA ROOT\tutorial shows how to get detailed information
using the functions Column Name(), Column Type(), Column Size() and Column Scale.
You may win some microseconds in performance if you use the procedure Column Info()

7 THE SELECT LIST 27

which fills a Column Info Type record.

Tut 7 3

...

32 for I in 1..Column_Count(Select_Table) loop

33 Put(Column_Name(Select_Table,I));Set_Col(15);

34 -- determine coltype and print image

35 Put(Typecat_Type’Image(Column_Type(Select_Table, I)));Set_Col(23);

36 -- colsize

37 Put(Natural’Image(Column_Size(Select_Table, I))); Set_Col(28);

38 -- colscale

39 if Column_Type(Select_Table,I) = Num then

40 Put_Line(Natural’Image(Column_Scale(Select_Table, I)));

41 else

42 New_Line;

43 end if;

44 end loop;

...

Play around with Tut 7 3. Connect to another Oracle Schema with more
and bigger tables and look at the output. Tune the output formatting of the
program. It is poor.

Note that

� For StrUB and lob columns (Blob, Clob, Bfile) the Size information is not
available immediately after Execute() since the size for this kind of data
is variable and is determined after Fetch() which is explained in the next
section. Immediately after Execute() Column Size() returns 0 for these
columns.

� If a number column is specified simply as
no column number

instead of
no column number(n)

in the table creation statement (which is allowed in the Oracle DDL spec-
ification) then Column Size() returns 0 for such a column.

You may wonder wether it is possible with Konada.Db to retrieve the original

7 THE SELECT LIST 28

Oracle datatype of a column. You have to query the Oracle Data Dictionary for
this task.31

Finally in this section take a look at the spec of Konada.Db.Sql in KONADA-

ROOT\lib especially the “Select List related Functions”.

31For example you may query the dictionary view user tab columns

8 FETCHING AND EXTRACTING DATA 29

8 Fetching and Extracting Data

In this section we will process data retrieved from the server. Suppose we have
executed a Select statement. What is the next step? According to 7.1 we must
fetch now the data rows from the server.

8.1 A Simple Example

After data is fetched and available on the client it may be extracted and pro-
cessed. The next simple example shows how this is done with Konada.Db.

Tut 8 1:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Sql; use Konada.Db.Sql;

3 --

4 with Text_Io; use Text_Io;

5 -- for ’LF’=Linefeed

6 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

7 --

8 procedure Tut_8_1 is

9 -- Declare Sqlinstance variable

10 Select_Emp: Sqltype;

11 C: Character;

12 begin

13 -- Logon using default connection

14 Logon("scott/tiger@tut");

15 -- Create an Sqlinstance

16 Create(Newsql => Select_Emp,

17 Code => "Select * from emp");

18 -- Execute it implicitly describing the query and define

19 -- variables which will hold result values after fetch()

20 Execute(Select_Emp);

21 -- now fetch iteratively from server as long as data available

22 while Fetch(Select_Emp) loop

23 for I in 1..Column_Count(Select_Emp) loop

24 Put(Column_Name(Select_Emp, I)); Set_Col(15);

25 -- extract to a string with get()

26 Put_Line(Get(Select_Emp,I));

27 end loop;

8 FETCHING AND EXTRACTING DATA 30

28 New_Line; Put("Press any key for next row ...");

29 Get_Immediate(C);

30 New_Line;

31 end loop;

32 end Tut_8_1;

You may stop the program by sending it a signal. In the outer while loop from
line 22 up to line 31 data is iteratively fetched using Konada.Db.Sql.Fetch().
Fetch() returns true if data could be retrieved and false if no more data row
is available.

In line 26 the data values are extracted using one of the many overloadings
of the Get() Function. Here we are using the one which returns a string. In
the above Example a position argument is used to determine the column in the
select list but we could have used a column name as well. Position arguments
are a little bit faster because the name has not to be resolved first.

8.2 Date and Number Formats

If you extract date or number formats you may control the formatting of the
string output. For date columns you can change the default output format by
changing Konada.Db.Date Format which is by default set to DD.MM.YYYY.

For number values the default output format is computed when you execute

a select statement and it cannot be changed.

But with providing an oracle format string for the Format parameter of the
Get() function you may override the defaults.

8.3 Extracting to other Ada Datatypes

As said earlier the Get() function is heavily overloaded. You can get data
as strings, integers, Ada.Calendar.Time, Long Float and as Files or Stream Ele-
ment Arrays. Every call to Get() may have one of the following three outcomes:

� Success because the typecat of the column is compatible with the datatype
of the return value of the Get() overloading. For example if you extract
an Integer value from a column with typecat Int.

� Success because Konada.Db did an implicit conversion. The above exam-
ple program Tut 8 1 contains such cases. E.g. the column values of the
column HIREDATE are implicitly converted to a string.

8 FETCHING AND EXTRACTING DATA 31

� Error because Konada.Db did not convert and the typecat of the column
is not compatible with the datatype of the return value of the Get()

overloading. In this case Konada.Db.Data Error is raised and the exception
information shows wich conversion could not be performed. This happens
for example if you try to get an Ada.Calendar.Time from an integer.

The table below shows the behavior of Get() in detail.

Get() behavior StrB Int Num Date Lob StrUB

String ok ok ok ok ? ok

Integer ! ok ok ! ! !

Long Float ! ok ok ! ! !

Time ! ! ! ok ! !

File ! ! ! ! ok ?

Binary ! ! ! ! ok !

Table 2: Behavior of data extracting. Horizontal: Konada Typecat. Vertical: Ada Datatype

Notes:

Lob is a shorthand for the three typecats Blob, Clob and Bfile. Time is for
Ada.Calendar.Time and Binary for a Stream Element Array. The table entries
have the following meanings:

� ok means that you may extract a column of the indicated typecat to the
indicated Ada Datatype without problem.

� ? means that extracting is possible but not recommended since implicit
conversions with eventually unexpected results are done.

� ! means that Konada.Db.Data Error will be raised.

Now take a close look at Tut 8 2. There are used all overloadings of Get()
except of File extraction and Binary extraction which will be discussed in 14.
Play around with the example, produce some Data Error-Exceptions and look at
the messages.

Note that there is no reliable way to extract Oracle Long Raw columns32,
which are deprecated. If you have the choice, migrate these columns to Blob.

32They are mapped to the typecat StrUB by Konada.Db

8 FETCHING AND EXTRACTING DATA 32

8.4 Handling Null Values

If a tables column has no not-null constraint the value null is permitted for
this column. This means that the value may be actually unknown or undefined.
If a null value is used in an expression33 then the value of the whole expression
is null no matter what the other values are34.

If you fetched a row from a query down to Konada.Db there may be a null

value among the column values. What happens if you try to extract such a
value? There are some easy rules depending on the return datatype of Get():

� String This overloading of Get() accepts a boolean parameter raise if null

with default false. If you call Get() with this parameter set to true

and you try to extract a null value then Konada.Db.Null Error is raised.
Otherwise Konada.Db.Null Descriptor is returned which i set to the string
“NULL”.

� Integer or Long Float In this case the behavior is the same as for the
string overloading but the default return value is 0 resp. 0.0.

� Other In all other cases Konada.Db.Null Error is raised.

If you want Get() not to raise an exception but returning a special substitute
for null different from Konada.Db.Null Descriptor35 then use the nvl() single
row function in your query like the example below shows:

select nvl(ename, ’Not Known’)

from emp

where empno=7369

Here the String “Not Known” is extracted if the ename column is null for
empno 7369.

As an exercise write a program which sets the ename column of employee
no. 7369 to null. Then select this row and extract the ename column with
raise if null set to true. Catch the exception and inform the user that no
name is known for employee no. 7369. Get a name from the user and update
the row with the new name.

33E.g. a sum, product or even a logical expression
34For example: the boolean expression (null or true) has value null!
35resp. 0, 0.0

9 USING BIND PLACEHOLDERS 33

9 Using Bind Placeholders

Bind Placeholders are identifiers in an SQL-Statement preceeded by a colon as
in

select *

from emp

where empno=:this_empno

In the above statement this empno acts as a bind placeholder. The Oracle
Oci Library expects this placeholder to be filled with an integer value before the
statement is executed. This is the 5. stage in SQL statement-processing (see
7.1). In this stage memory has to be allocated for the placeholder36. Then we
have to tell Oci where this memory is located and which datatype must be used
to interpret memory content. Finally we must fill in a value into the memory
location.

This sounds complicated but Konada.Db provides an easy to use interface to
perform binding. Now lets have a look on the reasons for using this feature of
Oci.

9.1 Why Bind Placeholders?

Suppose you have to write an application for the human resources department
of a company. Part of this application is a procedure which outputs data for an
employee given by user input. With your knowledge of Konada.Db presented so
far you will take the following approach in the design of this procedure:

1. Build an sql-statement string
Query String:="select * from emp where empno=" & User Input

based on the user’s input Empno.

2. Create an sql-instance using the query string.

3. Execute it.

4. Fetch, extract and display data.

The result would look similar to Tut 9 1 below.

36In most cases a variable is declared

9 USING BIND PLACEHOLDERS 34

Tut 9 1:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Sql; use Konada.Db.Sql;

3 --

4 with Text_Io; use Text_Io;

5 -- for ’LF’=Linefeed

6 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

7 --

8 procedure Tut_9_1 is

9 -- Declare Sqlinstance variable

10 Select_Emp: Sqltype;

11 -- For user Input

12 User_Input: String(1..10);

13 Last_Of_Input: Positive;

14 begin

15 -- Logon using default connection

16 Logon("scott/tiger@tut");

17 loop

18 Put("Give employee number(q for quit): ");

19 Get_Line(User_Input, Last_Of_Input);

20 if User_Input(1)=’q’ then

21 exit;

22 end if;

23 -- Create an Sqlinstance

24 Create(Newsql => Select_Emp,

25 Code => "Select * from emp where empno=" &

26 User_Input(1..Last_Of_Input));

27 -- Execute it implicitly describing the query and define

28 -- variables which will hold result values after fetch()

29 Execute(Select_Emp);

30 -- now fetch

31 if Fetch(Select_Emp) then

32 New_Line;

33 for I in 1..Column_Count(Select_Emp) loop

34 Put(Column_Name(Select_Emp, I)); Set_Col(15);

35 -- extract to a string with get()

36 Put_Line(Get(Select_Emp,I));

37 end loop;

38 else

39 Put_Line("No employee with this number found!");

9 USING BIND PLACEHOLDERS 35

40 end if;

41 end loop;

42 end Tut_9_1;

In line 23-26 an sqlinstance is created again and again. Remember what that
means:

1. A query string is build. That’s easy here but maybe more complicated.

2. The statement is parsed, desribed and an execution plan is figured out by
the RDBMS.

3. Define has to be performed.

4. Eventually a previously created sqlinstance has to be destroyed37 before
creating a new one in Select Emp.

All this has to be done but for what? Only to change the empno value in
the where clause of the statement! The same execution plan could have been
reused, the define variables could have been reused, the whole sqlinstance could
have been reused if we only could tell the library to supply another value for
Empno and re-execute the query. But exactly this can be done with the Bind()

and Set() procedures of Konada.Db.

The Code below shows how to implement the same functionality using the
bind mechanism:

Tut 9 2:

1 with Konada.Db.Connections; use Konada.Db.Connections;

2 with Konada.Db.Sql; use Konada.Db.Sql;

3 --

4 with Text_Io; use Text_Io;

5 -- for ’LF’=Linefeed

6 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

7 --

8 procedure Tut_9_2 is

9 -- Declare Sqlinstance variable

10 Select_Emp: Sqltype;

11 -- For user Input

12 User_Input: String(1..10);

37This includes deallocating all memory related to the sqlinstance

9 USING BIND PLACEHOLDERS 36

13 Last_Of_Input: Positive;

14 begin

15 -- Logon using default connection

16 Logon("scott/tiger@tut");

17 -- Create an Sqlinstance, using a bind placeholder now\

outside the loop

18 Create(Newsql => Select_Emp,

19 Code => "Select * from emp where empno=:this_empno");

20 -- Bind it with typecat Int

21 Bind(Sqlcmd => Select_Emp,

22 Name => "this_empno",

23 Typecat => Int);

24 loop

25 Put("Give employee number(q for quit): ");

26 Get_Line(User_Input, Last_Of_Input);

27 if User_Input(1)=’q’ then

28 exit;

29 end if;

30 -- Set the new value, reusing the sqlinstance in Select_Emp

31 Set(Sqlcmd => Select_Emp,

32 Name => "this_empno",

33 Value => Integer’Value(User_Input(1..Last_Of_Input)));

34 -- Execute the sqlinstance

35 Execute(Select_Emp);

36 -- now fetch

37 if Fetch(Select_Emp) then

38 New_Line;

39 for I in 1..Column_Count(Select_Emp) loop

40 Put(Column_Name(Select_Emp, I)); Set_Col(15);

41 -- extract to a string with get()

42 Put_Line(Get(Select_Emp,I));

43 end loop;

44 else

45 Put_Line("No employee with this number found!");

46 end if;

47 end loop;

48 end Tut_9_2;

In lines 21-23 Bind() is called to allocate a bind variable internally and the
library is told which Typecat to use - in this case Int. In lines 31-33 Set() is
used to supply a new value for the bind placeholder. Note the analogon to define

9 USING BIND PLACEHOLDERS 37

and get. The sqlinstance is created only once in Select Emp and then reused in
the loop as we have found to be more effective.

We have seen now that using bind placeholders is good for our resources and
performance. But there are other reasons to use it:

� Bind placeholders are inevitable for calling stored procedures and functions
(see 10).

� You must use bind placeholders for the modification of lobs. See 14.

� Your code is leaner and reflects the logic of sql-processing since the Create()
statement for the instance is separated from the value substitution e.g. the
Set() statement.

� You may create the sqlinstance at an outer scope and supply the value
inside a function. Later we will see examples for this method.

In the following section we will discuss the bind mechanism step by step.

9.2 Explicit Binds

We call a bind operation explicit if it is performed by a call to the Bind()

procedure. Here are the steps for the use of an explicit bind:

1. Create an sqlinstance containing a bind placeholder.

2. (optional) Determine the position of your placeholder if you want to per-
form a positional bind. This is not necessary if you want to do a named
bind or if you know already the position of your placeholder38.

3. Call Bind() and beneath the sqlinstance supply

� A position or a name.

� A typecat. Default is StrUB.

� A length. Only if the typecat is StrB you must provide a length since
only for StrB it is unclear how many memory has to be taken.39

38E.g. because there is only one
39The other cases are Lob’s but for those the memory handling is completely different. See

14

9 USING BIND PLACEHOLDERS 38

4. Set a value.

Now look carefully at Tut 9 3 where all bind related functions and procedures
are used. Note that there is no Bindsize() function because there are no sized
numbers on the client side in Oci. Inside the database we have sized numbers40.
So the sizes of bind placeholders are always known.

Play around with the example, produce same errors and look at the messages.

9.3 Setting Values and implicit Binds

After you have bound a placeholder explicitly you may set it to a specific value
using one of the overloadings of the Set() procedures. Now we encounter
a situation similar to the extraction of data. We have bound with a specific
typecat and now we may supply a value of a different datatype. For example

...

Bind(Sqlcmd, 2, Num);

Set(Sqlcmd, 2, "300.0");

...

In the above example Konada.Db would use Long Float’Value() to convert
the given String to a Num data element. But this attempt may fail.

If you bound to a Date typecat und want to supply the value as a string you
may provide an Oracle format mask as an additional parameter.

Konada.Db tries to convert your supported value. But best is to supply the
value compatible to the typecat to which you have bound the placeholder.

The table below shows the behavior of Set() with respect to Typecat/Datatype
combinations.

40number(23,2) for example

9 USING BIND PLACEHOLDERS 39

Set() behavior StrB Int Num Date Lob StrUB

String Size! ? ? Format! ? ok

Integer ? ok ok ! ! ?

Long Float ? ? ok ! ! ?

Time ! ! ! ok ! !

File ! ! ! ! Bfile! ?

Binary ! ! ! ! Bfile! !

Table 3: Behavior of Set(). Horizontal: Bind Typecat. Vertical: Datatype of actually supplied
Value

Notes:

� If you set a string value to an StrB bind placeholder and the length of
the given string exceeds the length value used in the call to Bind() then
Constrained Error will be raised. Therefore the warning Size! is placed
in the (String,StrB)-cell of the table above.

� If you supply a string value for a Date bind you have to provide an appro-
priate format mask. Otherwise the Oci Exception is passed through. See
the warning Format! in the above table.

� There is no Set() overloading for File because the Filename is given as
a string value. This would lead to a conflict with the string overloading.
Instead of an overloading i used a new name Set File().

� Any attempt to set a Bfile placeholder will cause Konada.Db.Data Error.
See the Bfile! warnings in the table. So why use binds to a Bfile at all?
This will be explained in 1441.

� In all cases with ? placed in a table cell there may occur errors or unex-
pected results. The cases with a ! will produce a Konada.Db.Data Error
exception.

You may have noticed that the call to Bind() is somewhat dispensable be-
cause the call to Set() should give us enough information to do the bind im-
plicitly. Good news! Konada.Db does support implicit binds.

41You may use a Bfile bind placeholder to select a Bfile lob locator into a bind variable using
a Select ... into ... statement

9 USING BIND PLACEHOLDERS 40

To get an example for implicit binds modify Tut 9 3. First move the line with
the Set() Statements directly past the second call to Bind()42. Then comment
out the Bind() Statements. Compile and run the program.

Note that the typecat of the first bind placeholder is StrUB now. This is
because the string overloading of Set() does always an implicit bind to an
StrUB data element which is a little bit slower than StrB. This is one reason to
use explicit binds. Other reasons will be explained in later sections. But here
are the rules for implicit binds inside Konada.Db depending on the overloading
of Set():

� String The string overloading does bind implicitly to an StrUB data ele-
ment.

� Integer causes an implicit bind to an Int data element.

� Long Float implicit bind to a Num.

� Time implicit bind to a Date.

� File, Binary implicit bind to a Blob.

Finally in this section note that it is possible to rebind a placeholder to
another typecat in which case memory is freed and a new bind is created. E.g.
the following is possible

...

1 Set(Change_Name,"new_ename","Muller");

2 Set(Change_Name,"empno_to_change", 7369);

3 Bind(Change_Name, "new_ename", StrB, 10);

4 Set(Change_Name,"new_ename","Muller");

...

In line 1 an implicit bind to an StrUB is created and in line 3 a rebind to a
StrB is done. Note that you have to set the value again since it is has gone lost
in line 3.

42this is necessary for the typecat output

9 USING BIND PLACEHOLDERS 41

9.4 Data Extraction from Binds

Why should data extraction from a bind be done? You bound a placeholder,
set a value. So why should you extract a value which is already known to the
program?

It’s true. There is no reason to extract data from a bind if we restrict
our database commands to pure SQL. But the Oracle RDBMS43 provides a
procedural Language Extension to SQL called PL/SQL which looks in its earlier
versions much like Ada83. In version 8 there are object oriented features built
in the language but Oracle choosed an approach quite different to Ada. We will
see Examples of PL/SQL procedures and functions in 10.

There is one PL/SQL construct which we discuss now: The Anonymous
Block. This is a declare (optional) ... begin ... end; block like in Ada
containing SQL statements, procedure or function calls and eventually other
blocks. In such a block you may use a select ... into ... statement:

begin

select ename into :this_ename

from emp

where empno=7369;

end;

This statement fetches the ename of employee no. 7369 into the bind variable
:this ename. If there is no employee matching the where-clause criteria the Oracle
Exception No Data Found is raised. If more than one row satisfy the criteria the
Oracle Exception Too Many Rows is raised. The Exceptions are passed through
and cause a Konada.Db.Sql Error Exception during Execute().

One possible use of data extraction from a bind should be evident now: you
may extract the fetched value in a select ... into ... statement like the
above. In Konada.Db for every overloading of Get() there is a corresponding
overloading of Bget() which you may use for extraction from a bind. Look at
example Tut 9 4 where the use of Bget() is shown. Note that you have to choose
carefully the typecat of the bind according to the table at 30 ff. Otherwise you
will eventually encounter a Konada.Db.Sql Error caused by an Oracle value error
at runtime. The extraction behavior of Bget() is exactly the same as that of
Get() as listed in 8.3.

At this point you should examine KONADA ROOT\samples\simple\demo1.
43Like others e.g. Db2, PostgreSql, MS Sql-Server

9 USING BIND PLACEHOLDERS 42

There is no Bget() use in this demo but binding is shown and dml and dql
statements both occur in this example.

10 CALLING STORED UNITS 43

10 Calling Stored Units

10.1 Calling Stored Units using Binds

As said in the previous section you may store PL/SQL procedures and functions
in the database. These stored program units may be called by other units or they
may be used to compose SQL statements. But how to call them from a client
application program?

Take for example the function emp desc() which you may create in your
scott schema by executing the statement below with Sql*Plus. Another way to
create it is running
KONADA ROOT\samples\simple\demo2
But attention! If you quit the program, the function is dropped from the
database!

Server Function Emp Desc()44

CREATE OR REPLACE function emp_desc(p_empno in number)

-- Short emp description

return varchar2

is

l_desc varchar2(100):=’’;

begin

select ’Department: ’||d.dname||’ Name: ’||e.ename

into l_desc

from emp e, dept d

where e.empno=p_empno and

e.deptno=d.deptno;

return l_desc;

exception

when NO_DATA_FOUND then

l_desc:=’No emp with number ’||to_char(p_empno)|| ’ found !’;

return l_desc;

when others then

l_desc:=’Error : ’||substr(SQLERRM,1,91);

return l_desc;

end;

44Attention! This is PL/SQL Code, not Ada

10 CALLING STORED UNITS 44

The function emp desc() takes a number parameter p empno and returns a
short description of the employee as a varchar2. There are two ways to call such
a stored function from the client side:

1. Call it inside an SQL statement like

Select emp_desc(7369) from dual

2. Call it inside an anonymous block using a bind placeholder like

begin

:description:=emp_desc(7369);

end;

Obviously the first method works only for function calls. And it works only
for function calls if the function has no OUT parameters in its parameter list45.

Look at KONADA ROOT\samples\simple\demo2 where the 2nd method to
call a PL/SQL function from Konada.Db is demonstrated. In the example
Tut 10 1 in the tutorials directory i have rewritten demo2 now calling a pro-
cedure with an OUT parameter.

10.2 Managing the SQL Instance

A situation which you may encounter quite frequently is that you want to wrap
a server side PL/SQL program unit on the client side. Let us look again at
demo2 and our server function emp desc(). We want to modify demo2 so that
we have an Ada function Client Emp Desc() which acts as a wrapper to the
server function.

In Tut 10 2 you see one possible approach to do it. Here is the code snippet
with the definition of the wrapper function Client Emp Desc():

...

function Client_Emp_Desc(Empno: in Integer)

return String is

Call_Emp_Desc: Sqltype;

begin

Create(Call_Emp_Desc,

45Yes: In PL/SQL functions may have OUT parameters!

10 CALLING STORED UNITS 45

"begin " & LF &

":ret:=emp_desc(:emp_no); " & LF &

"end; ");

Bind(Call_Emp_Desc,1, StrUB);

Set(Call_Emp_Desc,2,Empno);

Execute(Call_Emp_Desc);

return Bget(Call_Emp_Desc,1);

end Client_Emp_Desc;

...

Note that in this approach the sqlinstance is local in the function. From
the software engineering point of view this is o.k. but every time the function
is called, the sqlinstance is created, binding and Set() is done and finally the
sqlinstance is freed. This is not very reasonable with respect to performance.

I think that there are two main techniques for solving this problem:

The first idea46 is to move the sqlinstance to an outer scope and test inside
the wrapper function wether the instance is ready to use or must be set up47.
Tut 10 3 shows the implementation.

The 2nd appraoch to sqlinstance-management for functions and procedures
is to built a persistent type e.g. Employee and make the function/procedure
(e.g. Emp Desc()) a method of it. Objects of this type may contain sqlinstances
used for the persistence layer and in addition for Emp Desc() computation. This
solution is shown in the next section.

46Not very Ada like but sometimes a sufficient solution
47Use Is Empty() to test whether an sqltype variable contains an Sqlinstance

11 PERSISTENT TYPES 46

11 Persistent Types

Generally spoken a persistent type provides methods to

� load an object (instance) of the type from a persistent media48

� modify the objects content

� create a new object

� delete an object

� save the object back to the persistent media

� (optional) call some database procedures/functions.

11.1 An example

Note that the above definition is a very simple one. We will examine an ex-
ample now, an implementation of the persistent type Employee. The code for
this example is located in KONADA ROOT\samples\persist. Build and run the
main unit Employee. The persistent type Employee Type49 is derived from
Limited Controlled and its data members are completely privat. Moreover it
is discriminated and in a declaration you may supply an employee no. for the
discriminant.

Implementation Note: I declared the member Emp Desc Cmd to
be an access to an Sqltype - why? We want to wrap the server
function Emp Desc() in a client function. This client function
has to call Konada.Db.Sql.Execute() with an OUT parameter.
Since the client function takes an Employee Type instance as an
IN parameter i use indirection to provide Emp.Emp Desc Cmd.all
as an OUT parameter to Execute().

The code of the overwritten procedure Initialize() loads the database
data into the instance of Employee Type according to the given employee no.
Of course the main program has to connect to the database for this initialization
to succeed. If you supply a zero value for the discriminant an empty instance of
Employee Type is initialized and you may load the data later with a call to the
method Load().

48In our context from the Oracle database
49Declared in Employee Pkg.ads

11 PERSISTENT TYPES 47

...

Console_Logon;

...

declare

Emp: Employee_Type(7844);

begin

<Call Methods on emp here>

end;

...

Play around with the main unit and look carefully at the code in Employee Pkg.adb.
Especially note how the status member of an employee instance is managed. The
methods New Emp() and Delete Emp() are not yet written. Try it!

Some suggestions to improve the persistent type:

� You may call Save() in Finalize() depending on a flag

Save In Finalize: Boolean:={true|false};

declared at library level.

� You may control the set of loaded employee objects e.g. to ensure that
no employee individual is loaded twice50. For this you have to keep a list
of loaded employee numbers at library level and check in Initialize()

wether an employee is already on the list.

11.2 Setters and Getters

If the data members of a type are privat you have to use special procedures and
functions to modify or read them. These units are usually called Setters and
Getters. In our example there is only one such pair implemented51. Add other
pairs as an exercise.

As an alternative to setters and getters you may take a different approach
using partial views.

50This is a standard approach when maintaining an object cache of a persistent type
51The pair to modify/read the Ename member

11 PERSISTENT TYPES 48

� First declare a tagged type with members which you want to change di-
rectly. Declare this type in the public part of your package. Let us call it
the Public Type

� Derive the complete type from the public type with a private extension to
hold Sqlinstances and other hidden members.

� Now you may change the public members directly like this:
Emp.Ename:="Jones"

12 ASYNCHRONOUS EXECUTION 49

12 Asynchronous Execution

Normally in so called OLTP52 Database Applications the databases response time
of an application call is expected to be in the range of some seconds. So the
application can wait until the database server has completed execution.

If this is not possible because a call may need time in the range of some
minutes or even more you could of course use ada tasking to deal with such a
situation. The task could establish its own connection to the database and then
issue the long running call. The main unit could read a variable shared with the
task to determine if the call had already completed.

Konada.Db gives you another option. You may call Execute() with the
parameter Asnyc set to true. Control is returned immediately then. Later
you may determine using the Check Finished() procedure wether the call has
been completed. But attention! There is a subtle restriction associated with
asynchronous calls: The connection used by the asynchronous call may not be
used by other calls until the asynchronous call has completed. This is no severe
restriction since you may open a dedicated connection for the asynchronous call.

You may cancel an asynchronous call with the procedure Cancel(). Cancel()
instantly terminates the asynchronous call and resets the associated Connection.
You may alternatively call the procedure Reset() which has the same effect but
additionally for dql-statements reexecutes the query. This process of cancelling
and resetting may take some seconds of time53.

Note that if you don’t call Check Finished() until the asynchronous call
has completed and additionally you don’t cancel or reset the call then every
subsequent call on the same connection will raise an exception.

Look at KONADA ROOT\samples\simple\demo3.adb now to see an example
of an asynchronous call. The demo also shows Reset() and Cancel().

Demo3(Snippet):

...

70 --

71 -- Now call wait asynchronously

72 --

73 Execute(Sqlcmd => Waitproc, Async => True);

52OnLine T ransaction Processing
533-6 seconds

12 ASYNCHRONOUS EXECUTION 50

74 -- the following is ok since in the default connection

75 Put_Line("Executing Emp2"); New_Line;

76 Create(Emp2,"select * from emp order by 1"); Execute(Emp2);

77 -- Cancel(Waitproc);

78 -- But uncommenting the line below gives an error since also in

79 -- Conn_For_Async

80 -- Create(Emp,"select empno, ename from emp order by 1",Conn_For_Async);

Execute(Emp);

81 -- return;

...

If you uncomment line 80 you will get an Konada.Db.Sql exception reporting
an Oracle 24338 error because the program tries to call on a connection54 which is
already occupied by a running asynchronous call. If you additionally uncomment
line 77 (and line 81 because executing the following code does not make any sense
now) the error disappears because the connection is freed from the asynchronous
call by Cancel().

54Conn For Async

13 LOCKING 51

13 Locking

13.1 How to avoid Blocks

In this section we will learn how to avoid blocking situations like the one shown
in 18(Tut 6 2) where two update statements on the same row, executed from
different sessions block the application.

In Oracle SQL you may use the Select ... for update ... statement
to acquire a row-level lock. If the row is already locked and you try to lock it with
the NOWAIT option you will get an ORA-0054 Error. Open an sqlplus session to
the scott schema and type

SQL> update

2 emp

3 set ename=’Brown’

4 where empno=7369;

Don’t commit and don’t quit the session. Now open another sqlplus session
to scott and type

SQL> select empno

2 from

3 emp

4 where empno=7369

5 for update NOWAIT;

emp

*

ERROR in Line 3:

ORA-00054: resource busy and acquire with NOWAIT specified

Now it’s easy e.g. to add a function method Lock() to our Employee Type55

which tries to lock an employee instance and returns true if the lock could have
been placed and false otherwise. The function has simply to call a Select

... for update ... Statement with the NOWAIT option. The function then
catches the Konada.Db.Sql exception and checks wether Sql Error Code=54
in which case it returns false otherwise or if no exception ocurred it returns true.
Try it as an exercise!

55See 11

13 LOCKING 52

13.2 The Lock() Utility Procedure

Konada.Db provides a utility procedure Lock() for row-level locking. Look at the
specification in KONADA ROOT\lib\konada-db-utils.ads and read the com-
ments. In Tut 13 1 the use of the Lock() procedure is shown. You should lock
the 7369-emp-row before starting Tut 13 1 by opening an sqlplus session and
typing

SQL> update

2 emp

3 set ename=’Brown’

4 where empno=7369;

Then you may experiment by changing the call to the Lock() procedure and
by quitting or committing the sqlplus session while Tut 13 1 is waiting.

Note that the blocker information is only a good guess because in general
their could be more than one lock - especially in multithreaded applications -
which the program is waiting for. In such a situation the Lock() procedure
reports the first blocker which blocks the session supplied by the Conn parameter
to Lock().

Note also that the dba (most likely you) has to grant the select privilege
on the dynamic performance views V$SESSION and V$LOCK to the database user
who is given as the username parameter to the Konada.Db applications Logon()-
call. Otherwise you will not get any blocker information from Lock(). It would
suffice to grant the SELECT CATALOG ROLE role to the user.

14 LARGE OBJECTS 53

14 Large Objects

14.1 Introduction

In Oracle Databases you may store (or refer in Bfile columns) large data chunks
called large Objects or Lobs. As outlined in 7.3 you may store binary or character
data inline that is: directly in a tables column of a Blob56 or a Clob57 type.
Further you may store in a Bfile58 column a reference to an external operating
system file.

Of course in (relational) databases without lob support you could have a
table column Filepath which would store the location of a file in a file system
tree. You could write an application then to manage the database vs. file system
relation. Users would search a file using the databases query techniques and then
retrieve the file to a client with a file transport mechanism59.

But if you store large data inline in a database table then all the operations
on this data e.g. insert, update, delete are involved in transactions. Because of
this you will never have a mismatch between the stuctured data like Filename,
Keywords, ... and the corresponding large data if your application is well written.
You can use the databases mechanisms to ensure integrity between structured
and unstructured data. This is a great feature especially in creating content
management systems or archives.

14.2 Lob Support in Konada.Db

Konada.Db supports operations on lob columns through an easy to use interface
which is consistent with the already introduced procedures/functions for the
structured datatypes. For example you may select lobs, fetch and extract them
using Get() or Get File(). You may bind a lob placeholder and set it to a
file’s content or load it with stream data using Set() or Set File()60.

Although Konada.Db’s lob support includes Bfile columns i think that they
are not so important because they

� lack the Involved in Transactions-Feature discussed above and

56Binary Large Object
57Character Large Object
58Binary File
59FTP, SMB or a self written transport layer
60This is not possible for the Bfile type

14 LARGE OBJECTS 54

� cannot be modified or created by database operations. Only the reference
to the data chunk can be manipulated by the databases operations.

So i will focus the examples and discussions on inline lobs61 from now on.

14.3 Extracting Lobs

Before we can run our examples we have to create a table with a lob column
in scott’s schema. Moreover this table should contain some data. If you have
already built the lobdemo located in KONADA ROOT\samples\lob you are pre-
pared. If not then look at the README file in the lobdemo directory and execute
at least step 1) and 2).

Now you should have a table Portrait in your scott schema. This table has
a column Image of type Blob. If you successfully loaded the images (step 2) of
the README) you can start with the first example now.

Build and execute Tut 14 1 and then display image.jpg in the tutorial direc-
tory e.g. with a web browser. The interesting lines in the code of Tut 14 1
are

...

25 Bytes_Retrieved:=Get_File(Sqlcmd => Select_Image,

26 Name => "image",

27 File_Name => File_Name);

...

where the image file is extracted from the sqlinstance using the Get File()

function. You may supply an additional parameter Buffer Size which defaults
to 131072 (=128K). Supply a larger value to improve performance when ex-
tracting a big lob content62. In Tut 14 2 the same functionality is implemented
but now using a select ... into ... statement with a bind variable. Data
extraction is done with Bget File() in this case.

14.4 Modifying Lobs

You may insert or update lobs using bind variables with a few lines of code. Look
at Tut 14 3. Before you run Tut 14 3 you should copy some jpeg file to KONA-

61Blobs and Clobs
62Big >= 5M

14 LARGE OBJECTS 55

DA ROOT\tutorial and name it image.jpg. Now run Tut 14 3. After the run
the portrait of employee 7369 should have changed to the file you copied. The
most easy way to check wether the update was successful is to use lobdemo since
you have a menu item (s)how there. Alternatively you may delete image.jpg,
run Tut 14 1 and then check the new image.jpg with your web browser.

The next example shows how lob operations are involved in transactions. Play
around with Tut 14 4 and verify that lob modifications are involved in transac-
tions like ordinary data changes.

Finally you should examine the lobdemo program in KONADA ROOT\samples\lob.
Especially have a look at the handling of null values. You may set an image to
null with the menu item (e)rase.

14.5 Binary Get() and Set()

In KONADA ROOT\lib\konada-db-sql.ads you will find overloadings of the
Get() and Set() procedures whith a Stream Element Array parameter. These
overloadings may only be used for lobs. I don’t have a good example for their use.
But possibly in a three tier environment with a web server, an Oracle Database
and a client machine it would be useful to read and write directly to network
sockets instead of saving the lob content to a temporary file.

15 LIST OF EXAMPLES 56

15 List of Examples

The following list contains all examples given in the tutorial together with a short
description and a reference to their appearance in the text. Demo programs are
not listed.

� Tut 4 1. The “Hello World” of Konada.Db. Shows how to establish a
connection, the use of Rdbms Version() and Logoff(). => 4.1

� Tut 4 2. Use of the Default Connection. => 4.2

� Tut 4 3. Console Logon Utility. => 4.3

� Tut 5 1. Handling of Database Errors. => 13

� Tut 6 1. Simple statement execution and Rows Processed() function.
=> 6.2

� Tut 6 2. Transaction Control. => 18

� Tut 7 1. Shows use of Column Count() and Column Name() for select
lists. => 28

� Tut 7 2. How to retrieve Typecat Information with Column Type(). =>
30

� Tut 7 3. Shows retrieval of detailed select list information. => 7.4

� Tut 8 1. Simple data extraction. => 8.1

� Tut 8 2. Data extraction using overloadings of Get(). => 8.3

� Tut 9 1. Creating an sqlinstance based on user input without using bind
placeholders. => 9.1

� Tut 9 2. Same as Tut 9 1 but now using bind placeholders and Set() .
=> 9.1

� Tut 9 3. Shows more procedures/functions related to binding. => 9.2

� Tut 9 4. Data extraction from a bind placeholder using Select ...

into => 43

� Tut 10 1. Calling a stored function . => 45

� Tut 10 2. Wrapping a stored function (poor idea) . => 10.2

15 LIST OF EXAMPLES 57

� Tut 10 3. Wrapping a stored function (better idea) . => 47

� Tut 13 1. Shows the use of the Lock() utility procedure. => 13.2

� Tut 14 1. Extracting a Blob to a file using Get File(). => 14.3

� Tut 14 2. Same as Tut 14 1 but now using a bind placeholder and Select

... into => 62

� Tut 14 3. Modifying a Blob using Set File(). => 14.4

� Tut 14 4. Shows that operations on lobs are covered by transaction con-
trol. => 14.5

	Preface
	Installation Instructions
	Prerequisites
	Basic Installation
	Test of the Installation

	Tutorial Preparation
	Connecting to the Database
	Establishing a Connection
	The Default Connection
	The Utility Console Logon
	The Source Code

	Database Errors
	Executing Sql Statements
	Interaction with the Database System
	A simple Example
	Transaction Control
	Handling Errors
	Memory Management
	The Source

	The Select List
	Sql Statement processing
	Retrieving Simple Select List Information
	The Konada.Db Typecat System
	Retrieving detailed Select List Information

	Fetching and Extracting Data
	A Simple Example
	Date and Number Formats
	Extracting to other Ada Datatypes
	Handling Null Values

	Using Bind Placeholders
	Why Bind Placeholders?
	Explicit Binds
	Setting Values and implicit Binds
	Data Extraction from Binds

	Calling Stored Units
	Calling Stored Units using Binds
	Managing the SQL Instance

	Persistent Types
	An example
	Setters and Getters

	Asynchronous Execution
	Locking
	How to avoid Blocks
	The Lock() Utility Procedure

	Large Objects
	Introduction
	Lob Support in Konada.Db
	Extracting Lobs
	Modifying Lobs
	Binary Get() and Set()

	List of Examples

